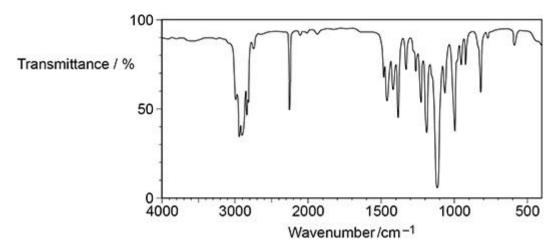

Q1.

This question is about spectroscopy.

(a) Compound K has molecular formula C_4H_8O Figure 1 shows the infrared spectrum of K.

Figure 1

Which functional group does **K** contain?

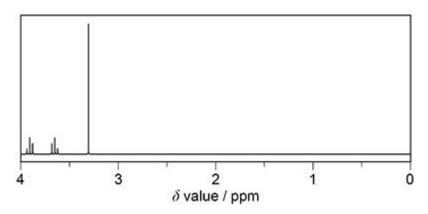

Tick (✓) one box.

Functional Group						
alcohol	alkene	amine	carbonyl	nitrile		

(1)

(b) Compound L has molecular formula C₄H₇NO Figure 2 shows the infrared spectrum of L.

Figure 2



L reacts with H ₂ in the presence of a nickel catalyst to give compound M .
Suggest three ways in which the infrared spectrum of ${\bf M}$ is different from the infrared spectrum of ${\bf L}$.

(3)

(c) Figure 3 shows the ¹H NMR spectrum of **Q**, C₃H₇ClO

Figure 3

The table below shows the chemical shifts (δ values) and integration values for each peak.

δ value / ppm	3.95	3.65	3.35
Integration value	0.6	0.6	0.9

Deduce the structure of **Q**.

Explain your answer.			

AQA Chemistry A-Leve	el - NMR Spectroscopy QP PhysicsA	ndMathsTutor.com
		(5)
	(Total 9 n	
00		
Q2. This	question is about NMR spectroscopy.	
(a)	A compound is usually mixed with Si(CH ₃) ₄ and either CCl ₄ or CDCl ₃ before recording the compound's ¹ H NMR spectrum.	
	State why Si(CH ₃) ₄ , CCl ₄ and CDCl ₃ are used in ¹ H NMR spectroscopy.	
	Explain how their properties make them suitable for use in ¹ H NMR	
	spectroscopy.	
		(6)

(Total 12 marks)

x				
				<u> </u>
	y it is difficult to us nift (δ value) for the			oklet to predict the n labelled y .
Гwo isome	s of CH ₃ CHClCO	CH(CH₃)₂ each	n have two si	nglet peaks only ir
Γwo isome heir ¹H NN	s of CH ₃ CHClCO			
Γwo isome heir ¹H NM n both spe	rs of CH₃CHClCO0 R spectra.	n ratio for the t	wo peaks is	
Two isome heir ¹ H NM n both spe Deduce the	rs of CH₃CHClCO0 R spectra. ctra the integration	n ratio for the t	wo peaks is	
Two isome heir ¹H NM n both spe	rs of CH₃CHClCO0 R spectra. ctra the integration	n ratio for the t	wo peaks is	
Two isome heir ¹ H NM n both spe Deduce the	rs of CH₃CHClCO0 R spectra. ctra the integration	n ratio for the t	wo peaks is	
Two isome heir ¹ H NM n both spe Deduce the	rs of CH₃CHClCO0 R spectra. ctra the integration	n ratio for the t	wo peaks is	
Γwo isome heir ¹H NN n both spe Deduce the	rs of CH₃CHClCO0 R spectra. ctra the integration	n ratio for the t	wo peaks is	
Fwo isome heir ¹ H NM n both spe Deduce the somer 1	rs of CH₃CHClCO0 R spectra. ctra the integration	n ratio for the t	wo peaks is	
Two isome heir ¹ H NM n both spe Deduce the	rs of CH₃CHClCO0 R spectra. ctra the integration	n ratio for the t	wo peaks is	

Q3.

There are several isomers with the molecular formula $C_6H_{16}N_2$

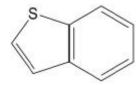
(a) One isomer is shown.

$$H_3C - CH_2$$
 $N - CH_2 - CH_2 - NH_2$
 $H_3C - CH_2$

Give the number of peaks in the ¹³C NMR spectrum of this isomer.

State and explain the splitting pattern of the peak for the hydrogens labelled a in its 1H NMR spectrum.

Number of ¹³ C peaks	
Splitting pattern	_
Explanation	
	(;


(b) Draw the structure of the isomer of C₆H₁₆N₂ used to make nylon 6,6

(1)

	(c)	Draw the streamine group	ucture of these	e isomer o	of C ₆ H ₁₆ N ₂ eaks in its	that contains ¹³C NMR spe	two prima i ctrum.	ту
								(1)
	(d)					that contains ¹³C NMR spe		
							(٦	(1) otal 6 marks)
Q4		many peaks	are there in	n the ¹³ C N	MR specti	um of 1,4-din	nethylbenze	ene?
	Α	8	0					
	В	4	0					
	С	3	0					
	D	2	0					T-1-14
								Total 1 mark)

Q5.

How many peaks does this compound have in its ¹³C spectrum?

- A 5
- **B** 6
- C 7
- D 8

(Total 1 mark)

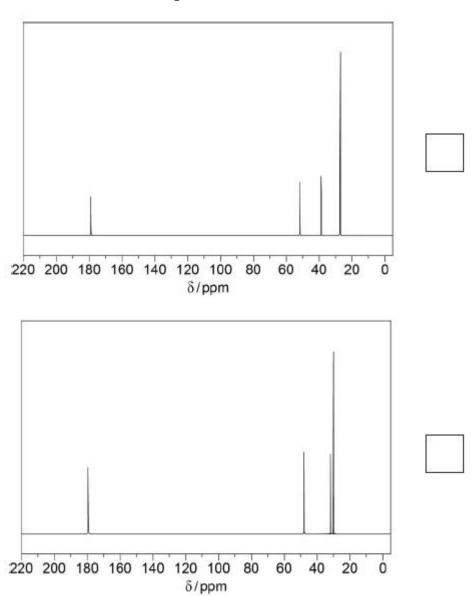
Q6.

¹H NMR, ¹³C NMR and infrared spectroscopy are used in organic chemistry to distinguish between compounds and to identify them.

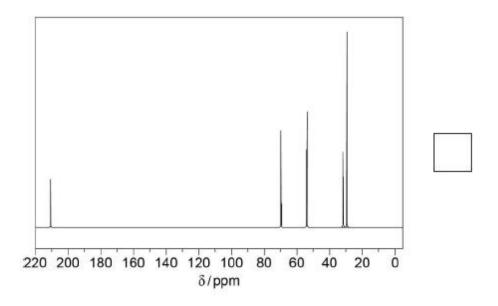
(a) Give the skeletal formula of the compound that is used as the standard when recording a ¹³C NMR spectrum.

(1)

(b) Four isomers of C₆H₁₂O₂, **P**, **Q**, **R** and **S**, shown in **Figure 1**, were analysed by ¹³C NMR spectrometry.

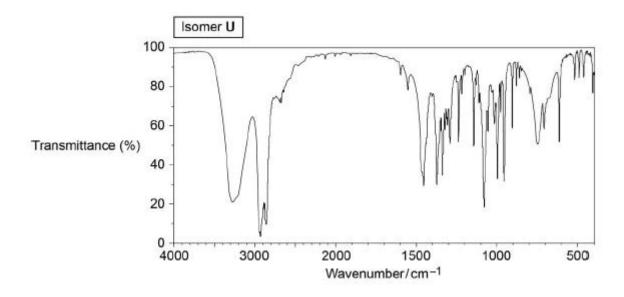

Figure 1

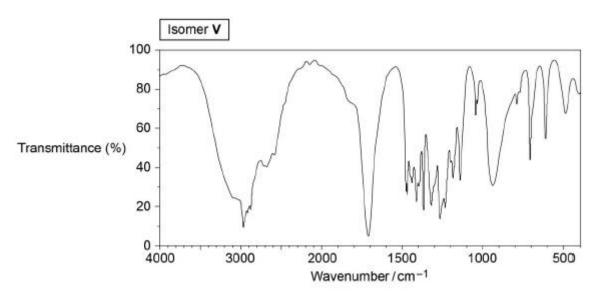
The ¹³C NMR spectra of three of these isomers are shown in **Figure 2**.


Use **Table C** in the Data Booklet to help you to identify which isomer produces each spectrum.

Write the letter of each isomer opposite its spectrum in Figure 2.

Figure 2




(3)

(c) The infrared spectra shown in **Figure 3** are those of three different isomers of $C_6H_{12}O_2$, isomers **T**, **U** and **V**.

Transmittance (%)
40
400
3000
2000
1500
1000
500
Wavenumber/cm-1

Identify the functional group(s) present in each isomer T, U and V of $C_6H_{12}O_2$ using Table A in the Data Booklet.

Explain your answer.			

Chemical shift, δ/ppm	3.7	3.5	2.6	2.2
Integration value	0.6	0.6	0.6	0.9
Splitting pattern	triplet	quartet	triplet	singlet
lse the data in the table ou answer this question		Table B in th	e Data Book	klet to help
reduce the part of the st	ructure of X		-	δ= 3.5 and
xplain the splitting patte	erns of these	peaks.		
ignal at δ = 3.5				

(1)	Deduce the struct		
	Use your answer	from part (e) to help you.	
	You are not requi	red to explain how you deduced the structure.	
		((2) Total 17 marks)
Q7.			
	hich amine has only t	hree peaks in its proton NMR spectrum?	
Α	Methylamine	0	
В	Trimethylamine	0	
С	Diethylamine	0	
D	Propylamine	0	